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Abstract. In this paper we show that optimal design of experiments, a specific topic in statistics,
constitutes a challenging application field for global optimization. This paper shows how various
structures in optimal design of experiments problems determine the structure of corresponding chal-
lenging global optimization problems. Three different kinds of experimental designs are discussed:
discrete designs, exact designs and replicationfree designs. Finding optimal designs for these three
concepts involves different optimization problems.
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1. Introduction

In many fields of sciences, experiments are done in order to estimate parameters
of regression models. Optimal experimental designs can be used to maximize the
precision of the least squares estimator, given the total number of observations. The
theory of optimal experimental design has been explained (among others) in the
monographs of Fedorov (1972), Silvey (1980) and Pukelsheim (1993). Atkinson
and Donev (1992), Atkinson (1996) and Müller (1998) show the usefulness of
optimal experimental designs in a more practical setting. Given the total number of
observations, the optimal design is determined by the design space (experimental
region), the regression model and the optimality criterion. Searching for these op-
timal designs yields challenging optimization problems (Zhigljavsky, 1991), which
has resulted in a large number of publications (among others: Welch, 1982; Gaffke
and Mathar, 1992; Jones and Wang, 1999). In this paper it is shown how general
and more specific properties of experimental design problems result in properties of
optimization problems for three different kinds of experimental designs. Important
properties of optimal experimental designs are discussed and it is indicated how
these properties can be helpful by solving the optimization problems for finding
the optimal design.

This paper considers optimal experimental design in the context of regression
models. Let

Yi = η(xi, θ)+ Ei, xi ∈ X ⊂ Rk (1)
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be a (statistical) regression model with a regression functionη and i.i.d. zero-
mean error termsEi . The unknownθ is a parameter vector withm elements,
θT = (θ1, . . . , θm) ∈ � ⊂ Rm. Further we assume thatη is a twice differentiable
continuous function.

2. Theory of optimal design of experiments

A concept of an experimental design in regression analysis, frequently used in
literature, is that of a so-calleddiscrete design. A discrete designε is written as:

ε =
(
x1 x2 · · · xr
p1 p2 · · · pr

)
(2)

wherepi indicates measurement weight at support pointxi , i = 1,2, . . . , r. The
weights sum to unity:

∑r
i=1 pi = 1, pi > 0. The support points are chosen from

the design spaceX; xi ∈ X. The design spaceX may have dimension> 1, which
means that also spatial problems could be considered (Müller, 1998). From an
optimization point of view, we would like to find, for given number of support
pointsr, the best values forpi andxi (in a sense to be specified). Notice however,
that in some situations this numberr is not known beforehand.

A more practical definition of an experimental design is that of a normalized
exact design. In this design, for allpi holds thatpiN is integer, whereN is the
maximum number of observations allowed in the experiment. Anexact design(not
normalized)ε(N) is usually written as follows:

ε(N) =
(
x1 x2 · · · xr
n1 n2 · · · nr

)
(3)

whereni is the number of replications at each support point,
∑r

i=1 ni = N . An
exact design becomes discrete by usingpi = ni/N . It is worth noticing, that
searching for an exact design (in practice all designs are exact) results in a mixed
continuous/integer optimization problem. These problems are in general hard to
solve.

In spatial problems, but also in other problems, observing in a point of the
design space is often restricted to a certain number of replications. If the number
of replications is restricted to one (replicationfree design), the observations have
a minimal distance between each other. In this case, the design spaceX is often
(see e.g. Fedorov, 1989) considered as (a grid of)Q candidate points or possible
measurement points (observations). The design problem becomes a combinatorial
problem of selectingN observations fromQ candidate points. The solution of the
problem will give an exact design with only one replication at each support point
(N = r).

Optimality of a design depends on the functionη(x, θ) with parameter vector
θ , under consideration. In many cases, research focuses on models with are linear
in the parameters; thenη(x,0) can be written asθT f (x). Moreover performance
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Figure 1. Standardized variance functions for the two normalized exact designsε1 andε2 for
N = 3.

depends on a specific criterion which is a function of the so-called information
matrix. Experiments which contain a lot of information enlarge the precision of
the estimation of the parameters of the model. If a linear model with the usual
regression assumptions of independent errors and constant variance is studied, the
information matrix for a discrete design is given by:

M[ε] =
r∑
i=1

pif (xi)f
T (xi) (4)

The inverse of the information matrix (M−1, for exact designs the variance-
covariance matrix of̂θ) is helpful to represent the variance of the predictorη(x, θ̂ )

on the design spaceX by means of the standardized variance function. The stand-
ardized variance function (under the usual statistical assumptions) is defined as
follows:

d(x, ε) = var[η(x, θ̂ )] = f T (x)M−1f (x) (5)

This standardized variance function makes the design problem easier to under-
stand from a graphical point of view. Note that for linear models the standardized
variance function is independent ofθ , becausef does not depend on the para-
meter vectorθ . Figure 1 shows the standardized variance functions of two designs
(N = 3) for a simple linear model,η(x, θ) = θ1 + θ2x, x ∈ [−1,1]. The designs
are chosen as follows:

ε1 =
(−1 0 1

1
3

1
3

1
3

)
, ε2 =

(−1 1
1
3

2
3

)
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The two designs are almost the same, only the measurement atx = 0 in designε1

is moved to the right end of the interval for designε2. Figure 1 shows the result
of this movement, as the standardized variance at the right end of the interval is
lowered. The maxima ofd(x, ε) are found, for any design, at the extreme points of
the design space. In Section 2.2 we will come back to this.

The theory of optimal experimental designs can be extended to nonlinear mod-
els by considering the Taylor series expansion (Atkinson and Donev, 1992). In this
case, forf T (x) the vector of partial derivatives is used

f T (x) =
[
∂η(x, θ)

∂θ1

∂η(x, θ)

∂θ2
· · · ∂η(x, θ)

∂θm

]
(6)

Optimal designs for nonlinear models are calledlocally optimal designsbecause
f (x) depends on values ofθ , so local with respect to parameter values ofθ . This
is confusing given another interpretation of the terminology of locally optimal
solutions in global optimization. The information matrix in the nonlinear case is
denoted byM[θ, ε].

2.1. CRITERIA

Many criteria for optimal designs are functions of the information matrix, say
φ(M[ε]). The most popular criterion isD-optimality, which minimizes the gen-
eralized variance of the parameter estimates. This corresponds to minimizing the
value of the determinant of the variance-covariance matrixM−1[ε]. When interest
is focused on estimation of a subset of elements ofθ , the criterion is written as
Ds. A design which minimizes the maximum of the standardized variance function
over the design regionX is called aG-optimaldesign. The criteria are determined
by minimizing the following functions:

D-optimality: det(M−1[ε]) (7)

Ds-optimality: det(M11[ε]) (8)

G-optimality: max
x∈X

d(x, ε) (9)

whereM11[ε] is thes × s submatrix ofM−1[ε] with rows and columns corres-
ponding to thes selected elements ofθ . The exact designs(N = 3) obtained from
ε1 andε2 presented in Figure 1 are G-optimal and D-optimal designs respectively.

2.2. PROPERTIES OF OPTIMAL DESIGN PROBLEMS

The optimization problem for a discrete design can be considered as choosing the
bestxi andpi. A problem in using general purpose optimization methods is that
the number of support points is not known beforehand (Jones and Wang, 1999).
The optimal design problem becomes even more difficult when an exact design
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is needed, which results into a mixed continuous/integer optimization problem.
Boer et al. (2000) show that this problem can not be solved very easily, because of
local optima. Some important properties (theorems) from the optimal experimental
design theory can assist in solving the optimization problems. We will present them
without going very much into detail giving the reader a flavour of the existing the-
ory. The properties will be ordered from general properties of models and criteria
to more specific cases.

− The criterion functionφ(M[ε]) has certain properties that capture the idea of
whether the information in matrixM is large or small. If a designε∗ is at least
as good asε, the information in matrixM[ε∗] is considered larger than that in
M[ε] in a certain ordering. A reasonable criterion of the information matrix
is that the value of a criterion function is non-decreasing (monotonic) when
measurements are removed from an existing design. An application of this
property in a Branch-and-Bound algorithm for optimal replicationfree designs
is discussed in Section 3.3.

− Although, the number of support pointsr of a design is variable in the optim-
ization problem considered here, certain bounds can be given. These bounds
can be derived by looking at some basic properties of the information matrix
M (Fedorov, 1972):
1. For any designε : M[ε] is positive-semidefinite.
2. If r < m then det(M[ε]) = 0, i.e.M−1[ε] does not exist.
3. For any compact design spaceX, the set {M[ε]; ε is discrete} is convex.

From property 2 it is clear that the number of support points should at least
be equal to the number of parameters(r > m). Property 3 leads together with
Carathéodory’s Theorem (see Silvey, appendix 2, 1980) to an upper bound for
the minimum number of support points. This upper bound is equal to1

2m(m+
1) + 1. For D-optimality this can be strengthened to1

2m(m + 1). Thus, for
certain criteriaφ(M) there exists an optimal design with at leastm and at
most 1

2m(m+ 1)+ 1 support points. These bounds for the number of support
points are especially useful for general purpose optimization (Section 3.4).

− The most celebrated theorem in optimal design of experiments is undoubtedly
the Equivalence Theorem of Kiefer and Wolfowitz (1960). This theorem states
that the following characterizations of an optimal discrete designε∗ are equiv-
alent.

(i) designε∗ is D-optimal (10)

(ii) ε∗ minimizes max
x
d(x, ε) or ε∗ is G-optimal (11)

(iii) max
x
d(x, ε∗) = m (12)

For a discussion and proof see (among others) Silvey (1980). This theorem
was first derived by Kiefer and Wolfowitz (1960) for linear models, but White
(1973) showed that it can be extended to nonlinear models. Note that this
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theorem holds for discrete designs, not for all exact designs. Figure 1 shows
an example of (normalized) exact designs where the D- and G-optimal designs
are different.
This theorem gives the opportunity to calculate D-optimal discrete designs
by means of properties of G-optimal (discrete) designs. For G-optimality the
maximum of the standardized variance matrix is minimized. It is known – see
(iii) of the Equivalence theorem – that as long as this maximum is larger than
m, the design is not G-optimal and thus not D-optimal. By putting (additional)
weight at pointx∗ where the maximum ofd(x, ε) is reached, the standardized
variance at pointx∗ can be lowered (see Figure 1). This concept is used in
the development of an algorithm (Fedorov, 1972), which will be elaborated
further in Section 3.2.

− Optimal exactdesigns are often difficult to calculate because the number of
replications at each support point should be integer. In the special case of
r = m and D-optimality, the number of replications should be chosen as
equal as possible. Rasch (1990) shows this by rewriting the information matrix
M[θ, ε] in the following matrix notation:

M[θ, ε] = GT (θ, ε(N))NG(θ, ε(N)) (13)

where

GT (θ, ε(N)) = [f (x1) f (x2) · · · f (xr)]
and

N = diag(n1, n2, . . . , nr)

Minimizing det(M−1[ε]) means maximizing det(M[ε]). Now

|GT (θ, ε(N))NG(θ, ε(N))| = |GT (θ, ε(N))||N ||G(θ, ε(N))| (14)

G is independent ofni and|N | = ∏ni is maximized when the values ofni
are as equal as possible.

− Figure 1 illustrates the standardized variance functions for two designs for
the easy case of simple linear regression. The maxima of the standardized
variance functions can be found in the extreme points of the design space, due
to the convexity of these functions. As long asf (x) is linear inx, the stand-
ardized variance functiond(x, ε) = f T (x)M−1f (x) is a convex quadratic
function. Iff (x) is nonlinear inx, the resulting standardized variance function
is not quadratic. Consider the following quasi-linear (linear in parameters)
model:

η(x, θ) = θ1+ θ2x1+ θ3x2+ θ4x1x2 (15)
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Figure 2. Contour map of the standardized variance function ofη(x, θ) = θ1 + θ2x1 +
θ3x2 + θ4x1x2 for designε3 on a unit square.

wherex1 andx2 can be chosen fromX = [−1,1]2 ⊂ R2. A D-optimal design
for this function is equal to:

ε3 =
 1 1 −1 −1
−1 1 1 −1
0.25 0.25 0.25 0.25

 (16)

where the first row contains the coordinates ofx1 and the second row the
coordinates ofx2. It can be shown that this design is D-optimal by calculating
the standardized variance function for designε3

d(x, ε3) = 1+ x2
1 + x2

2 + x2
1x

2
2 (17)

A plot of this standardized variance function on a unit square is given in
Figure 2. Note that this design is indeed D-optimal, because the maximum
on the unit square is equal to the number of parameters (see equation (12);
Müller, 1998).
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3. Searching the optimal design

In this section different ways of finding optimal designs are discussed. The prop-
erties of the design problem for a certain model and criterion can be extended to a
complete analytical solution for a specific design problem (Section 3.1). However,
most problems are too complex to find an analytical solution. Therefore, Fedorov
introduced an algorithm to find the optimal solution (Section 3.2). In Section 3.3
a combinatorial optimization algorithm is outlined, for the special case of a design
space consisting of a finite set of candidate points. Finally, it is illustrated how
general purpose optimization algorithms will perform for these kind of problems
(Section 3.4).

3.1. ANALYTICAL RESULTS

Many examples of analytical derivations of optimal designs can be found in liter-
ature (e.g. Fedorov, 1972; Rasch, 1990; Vila, 1991). An illustrative example of an
analytical solution of a design problem is given by Boer et al. (2000). An exact
D-optimal two-point design for the Michaelis-Menten function(r = m = 2) can
be found by minimizing

φ(M−1[ε]) = K(x1, x2, n1, n2) = (1+ βx1)
4(1+ βx2)

4

α2(x1− x2)2x
2
1x

2
2n1n2

(18)

It is obvious thatn1 andn2 should be chosen as equal as possible, as already has
been shown by the third theoretical property in Section 2.2. The choice ofx1 and
x2 is more complicated. Forx ∈ [0, xu], xu > 0 it can be derived that the following
exact design is D-optimal( xu

2+ xuβ xu

n1 n2

)
(19)

with n1 + n2 = N . For N = 2n, n1 equalsn2 and forN = 2n + 1 choose
n1 = n, n2 = n+ 1 orn1 = n+ 1, n2 = n (Ermakov and Zhigljasky, 1987).

3.2. SPECIAL ALGORITHMS FOR OPTIMAL DESIGNS

Because an analytical solution can not be found for every design problem, some
specific algorithms have been constructed to find the optimal solution. Although
more algorithms are available, we restrict ourselves to the V-(Fedorov, 1972) al-
gorithm, which can be described as follows:

1. Given start designε0, stopping criteria,s = 0, r0 the number of support points
of ε0.
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2. Determine:

M[εs ] =
rs∑
i=1

pisf (xis)f
T (xis).

3. CalculateD[εs] = M−1[εs].
4. Nowd(x, εs) = f T (x)D[εs]f (x).

Determine:

δs = max
x
d(x, εs)−m.

a pointx∗s ∈ arg max
x
d(x, εs).

5. The step-size:αs = δs/(δs + (m− 1))m.
6. εs+1 is calculated by:

a)
Recalculate all the weights(i = 1,2, . . . , rs) of εs in the following way:

pi(s+1) = pis(1− αs).
b)
Add x∗s to designεs with weightαs, updaters+1. If x∗s ∈ εs, updateεs+1.

7. Check stopping criteria,s := s + 1 and go to 2.

This algorithm is mainly based on the properties of the Equivalence Theorem. It
is known that a D-optimal (discrete) design minimizes the maximum of the stand-
ardized variance function. This algorithm puts (additional) weight on the value of
a pointx∗ (step 6) where the standardized variance function reaches its maximum
(step 4), as long as that maximum is larger than the number of parameters con-
sidered. Note that step 4 implies a global optimization problem. Jones and Wang
(1999) mention some pros and cons of this algorithm. The main advantage of this
algorithm is that the number of support points does not have to be fixed beforehand.
Further, it is important that the algorithm ensures convergence to the optimal design
under some conditions. The main disadvantage is that the algorithm may be very
slow for some problems (Atkinson and Donev, 1992). This is mainly caused by
the fact that after introduction, a (possibly non-optimal) support point does not
disappear, probably only its weight decreases. The following example is given as
an illustration of the V-algorithm.

Consider the following model

η(x, θ) = θ1+ θ2x + θ3x
2 (20)

with X = [0,1]. Figure 3 shows the standardized variance function of the follow-
ing (not optimal) design, which is used as start design for the V-algorithm.

ε0 =
(

0 0.2 1
0.3333 0.3333 0.3333

)
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Figure 3. Illustration of the V-algorithm for model (20) with start designε0.

After one iteration of the V-algorithm the design becomes as follows:

ε1 =
(

0 0.2 1 0.5378
0.2492 0.2492 0.2492 0.2523

)
The standardized variance function of designε1 is graphically represented in Fig-
ure 3. We restrict ourselves to one iteration. The final result of the algorithm
converges to the D-optimal design, which is:

ε∗ =
(

0 0.5 1
0.3333 0.3333 0.3333

)

3.3. COMBINATORIAL OPTIMIZATION OF THE OPTIMAL DESIGN

The optimal design problem becomes a combinatorial optimization problem, when
the design space is restricted to a finite discrete set ofQ candidate (design) points,
BQ = {x1, x2, . . . , xQ}. Rasch et al. (1997) show some algorithms for selectingN

design points out ofBQ.
The calculation time of full enumeration of this problem was reduced consid-

erably by applying a Branch-and-Bound algorithm. This fast Branch-and-Bound
algorithm is based on the fact that the criterion functionφ(M[ε]) is monotonic
(see Section 2.2). The drawback of this procedure is that the number of candidate
points is restricted to about 30. Figure 4 gives an impression of this combinatorial
optimization problem for one of the examples used by Rasch et al. (1997).

Müller and Pázman (1998) constructed an algorithm to find optimal designs
with more candidate points. The algorithm makes use of a corresponding inform-
ation matrix, which approximates the information matrix for exact designs. Prom-
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Figure 4. A plot of the function 1− 1.4e−0.2x with the corresponding 9-point replicationfree
D-optimal design selected from 26 candidate points.

ising results are shown for a spatial example of Fedorov (Fedorov, 1989) of a
20× 20 point grid.

3.4. GENERAL PURPOSE OPTIMIZATION

The difficulty in finding optimal designs with general purpose optimization proced-
ures is that the number of support points is not known beforehand. We saw already
that there can be given certain bounds for the number of support points in Section
2.2. However, it would be preferable when a general purpose optimization proced-
ure does not depend on the number of support points. Boer et al. (2000) illustrate
with the Michaelis-Menten function, that the mixed continuous/integer program-
ming problem can be rewritten into a fully continuous nonlinear programming
problem, formulated as follows:

min{K(x′1, x′2, . . . , x′N)}
under the condition: (21)

xl 6 x′1 6 x′2 6 · · · 6 x′N 6 xu
whereK is equal to a certain criterion,xl is the lower bound andxu the upper bound
of the one dimensional design space. In this case,x′i are (single) measurement
points in the design space.

In the paper of Boer et al. (2000) it is shown that a (sub)-D-optimal design with
6 and 4 replications at the two support points is a local minimum of the continuous
optimization problem. Figure 5 illustrates this by changing the value of variablex′6
of the D-optimal design(x′1, . . . , x

′
5 = 28.32, andx′6, . . . , x

′
10 = 1440) from the
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Figure 5. Non-convexity of the continuous NLP formulation of the D-optimal design problem

lower to the upper bound of the design space. In this way many local minima may
appear.

Jones and Wang (1999) argue that general optimization procedures are more
efficient than special algorithms like the V-algorithm. They use global optimization
methods, because the criterion considered has several local optima. They discuss
two well-known stochastic global optimization methods: multi-start local search
and simulated annealing. For the last it is suggested to stop the annealing proced-
ure at a certain point and then continue the search by an effective local search
procedure.

4. Conclusions

This paper shows how the structure of the design space, model and criterion in
optimal design of experiments problems determines the structure of corresponding
challenging global optimization problems. Three different kinds of experimental
designs are discussed: discrete designs, exact designs and replicationfree designs.
Finding the optimal designs for these three concepts involves different optimization
problems.

Discrete design problems are most easy to solve. There are many examples of
a complete analytical derivation of the optimal design, without using optimization
methods. However, if an analytical solution is not available, optimization methods
are needed. Fedorov (1972) proposes a specific algorithm which ensures conver-
gence to the optimal discrete design, but may be very slow for some problems.
General purpose optimization does often not work adequately, because the num-
ber of support points is often not known beforehand and local minima may occur
(Jones and Wang, 1999).

Exact design problems are hard to solve, because finding the optimal design im-
plies solving a mixed continuous/integer optimization problem. Boer et al. (2000)
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show that a fully continuous formulation of the problem results in many local mini-
ma. An other interesting approach to find exact designs is to construct exact design
from the optimal discrete design with a certain rounding method (Pukelsheim and
Rieder, 1992; Gaffke and Heiligers, 1995). It can be shown that the criterion values
of these exact designs have a limited loss of efficiency compared to the criterion
values of optimal exact designs.

If the design space is restricted to a set of candidate points, combinatorial op-
timization can be applied to find the optimal solution. Rasch et al. (1997) show
a Branch-and-Bound algorithm (full enumeration) for this, based on the fact that
every reasonable design criterion is monotonic. A same kind of algorithm, in this
case for maximum entropy sampling, can be found in Ko et al. (1995). For both
articles, full enumeration is only applicable when the number of candidate points
is restricted. Larger problems have to be solved with search algorithms (Fedorov,
1989; Müller, 1998).

Up to now no specific global optimization algorithms have been developed
in the field of optimal experimental designs. In our opinion, optimal design of
experiments constitutes a challenging application field for global optimization.
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